BRIEF COMMUNICATION

Synthesis and Crystal Structure of a New Ruthenium Silicophosphate: RuP₃SiO₁₁

Hiroshi Fukuoka, Hideo Imoto, and Taro Saito

Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113, Japan

Received July 5, 1995; accepted September 14, 1995

A new ruthenium silicophosphate RuP₃SiO₁₁ was obtained and the structure was determined by single-crystal X-ray diffraction. It crystallizes in the trigonal space group $R\overline{3}c$ with a = 8.253(3)Å, c = 39.317(4)Å, V = 2319(2)Å³, Z = 12, R =0.029, and $R_W = 0.026$. The structure is composed of RuO₆, Si₂O₇, and P₂O₇ units. The Si₂O₇ unit shares the six oxygen atoms with six P₂O₇ units, while the P₂O₇ unit shares the six oxygen atoms with two Si₂O₇ units and four RuO₆ octahedra. The anionic part forms an infinite three-dimensional network of silicophosphate. RuP₃SiO₁₁ is isotypic with MoP₃SiO₁₁. © 1996 Academic Press, Inc.

Silicophosphates are the compounds having the condensed SiO₄ and PO₄ tetrahedra. These tetrahedra are further connected with metal polyhedra. Recently, many silicophosphates were discovered in the M-P-Si-O systems, M = Cd (1), V (2), Mo (3-7), Ti (8), Sn (8), Si (9), and Ge (10). In their structures, PO₄ is connected with XO_4 and MO_6 (or M_2O_9) units. On the other hand, SiO₄ is connected only with XO_4 tetrahedra.

In the present paper, we describe the preparation and structure of a new ruthenium silicophosphate RuP_3SiO_{11} . It contains Si_2O_7 units with D_{3d} symmetry and P_2O_7 units. In the chemistry of phosphate, ruthenium has been less studied than in the case of molybdenum or other transition metals. Only two ruthenium phosphates have been reported (11), and RuP_3SiO_{11} is the first silicophosphate of ruthenium.

Single crystals of RuP_3SiO_{11} were accidentially obtained at first from a system containing niobium by the following method. The mixture of ruthenium chloride hydrate and 85% phosphoric acid in a mole ratio of 1:3 was heated at 350°C for 1 week under N₂ gas, and a brown powder of an amorphous ruthenium phosphate H₂RuP₃O₁₀(11) was obtained. The powder precursor was mixed with Nb₂O₅ (metal ratio: Nb/Ru ≈ 0.5) and was sealed in a silica ampoule. The ampoule was heated at 950°C for 5 days and then slowly cooled at 5°C \cdot hr⁻¹ to 850°C, and the furnace was turned off. Large yellow crystals of RuP₃SiO₁₁ were obtained as the main product. Though the crystals of RuP₃-SiO₁₁ have very good quality, they are mixed with a black powder of Nb₂(PO₄)₃(12) and chemical analysis of the crystals was impossible.

Single crystals were obtained also from the system without niobium by the following procedure. The mixture of ruthenium chloride hydrate (Tanaka) and 85% phosphoric acid (Koso-kagaku) in a mole ratio of 1:4 was heated in air for 40 min, and the residue was then heated in platinum boats under N₂ gas flow at 350°C for 1 week. The resulted brown powder was amorphous ruthenium phosphate (Ru content 24.2%). It was pressed into a pellet and sealed in an evacuated silica ampoule. The ampoule was heated at 950°C for 5 days, and yellow thin plate crystals of RuP₃-SiO₁₁ were obtained with a small amount of RuO₂. Silicon in RuP₃SiO₁₁ comes from the silica ampoule. The crystals yielded in this reaction were very thin. Even the largest crystal, which was used for single-crystal X-ray study, was only 0.01-mm thick.

The structures of the two crystals, one from the Ru–P– Si–O system and another from the Ru–Nb–Si–P–O system, have been determined by single-crystal X-ray studies. Atomic parameters were determined by the Patterson method (SHELXS86 (13)) and Fourier techniques (SHELXS76 (14)). A full-matrix least-squares program ANYBLK (15) was used for the final refinement. The crystallographic and experimental data of the two crystals are summarized in Table 1. The comparison of the results shows that they are the same compound. The cell parameters of the two crystals are identical within the normal experimental error. The refined atomic coordinates of the two crystals have only the statistically expected differences, i.e., the maximum value of $\Delta/(\sigma_1^2 + \sigma_2^2)^{1/2}$ was 2.2. Here,

TABLE 1 Crystallographic Data for RuP₃SiO₁₁

TABLE 3						
Bond Distances	and	Angles	in	RuP ₃ SiO ₁₁		

- - #1

	Crystal 1 ^a	Crystal 2 ^a
Formula weight	398.07	398.07
Space group	$R\overline{3}c$ (No. 167)	$R\overline{3}c$ (No. 167)
a(Å)	$8.247(2)^{b}$	$8.253(3)^{b}$
c(Å)	$39.287(4)^{b}$	$39.317(4)^{b}$
$V(Å^3)$	2314(1)	2319(2)
Z	12	12
F(000), electrons	3348	3348
$D_{\text{calcd}}(\mathbf{g}\cdot\mathbf{cm}^{-3})$	3.428	3.421
$T(\mathbf{K})$ of data collection	296	296
Crystal size (mm)	$0.12 \times 0.10 \times 0.01$	$0.25 \times 0.12 \times 0.05$
Diffratometer	Rigaku AFC-5R	Rigaku AFC-6S
Radiation	Mo <i>Kα</i> 0.7107Å	Mo <i>K</i> α 0.7107Å
(graphite monochromated)		
Scan mode	$2\theta - \omega$	$2\theta - \omega$
Scan range (degree)	$1.10 + 0.3 \tan \omega$	$1.26 + 0.3 \tan \omega$
Collection region	$0 \le h \le 12$	$0 \le h \le 9$
	$-12 \le k \le 12$	$-10 \le k \le 10$
	$-55 \le l \le 55$	$0 \le l \le 54$
2θ limit	$5^\circ \le 2\theta \le 60^\circ$	$5^{\circ} \le 2\theta \le 60^{\circ}$
No. of measured reflections	4821	2448
No. of unique reflections	908	767
No. of observed reflections	520	611
	$ F_{\rm o} > 4\sigma(F_{\rm o})$	$ F_{\rm o} > 3\sigma(F_{\rm o})$
Linear absorption coeff. $\mu(\text{cm}^{-1})$	28.71	28.65
Absorption correction	ψ -scan correct with -6 1-10 reflection	ψ -scan correct with -1 5 0 reflection
Transmission factor	0.7738/0.9725	0.7846/0.9880
No. of variable parameters	50	50
weighting scheme	$w = 1/\sigma^2(F_0)$	$w = 1/\sigma^2(F_0)$
R, R_w^c	0.0367, 0.0233	0.0290, 0.0260
Goodness of fit, S^d	1.50	2.07
Residual density ^{e} eÅ ⁻³	1.04	0.87
Residual delisity CA	1.07	0.07

 $^{\alpha}$ Crystal 1 was obtained from the Ru–P–Si–O system and crystal 2 was obtained from the Ru–Nb–P–Si–O system.

^b The cell constant refinement is constrained in the trigonal system. ^c $R = \Sigma (||F_o| - |F_c||) \Sigma |F_o|, R_w = [\Sigma w(|F_o| - |F_c|)^2 \Sigma w F_o^2]^{1/2} (w = 1/\sigma(F_o)^2).$

 ${}^{d}S = [w(|F_{o}| - |F_{c}|)^{2}/(N_{observns} - N_{parameters})]^{1/2}.$

^e The highest residual electrons of the final difference Fourier map.

Ru	O2 O2 ^{#1}		O2 ^{#2} O3		O3 ^{#1}	O3 ^{#2}	
O2	2.040	(3) 2.792(5)	2.792(5)	2.967(4)	4.085(4)	2.920(4)	
O2#1	86.36(12) 2.040(3)	2.792(5)	2.920(4)	2.967(4)	4.085(4)	
O2#2	86.36(12) 86.36(12)	2.040(3)	4.085(4)	2.920(4)	2.967(4)	
O3	93.15(12) 91.21(12)	177.55(12)	2.046(3)	2.874(5)	2.874(5)	
O3#1	177.55(12) 93.15(12)	91.21(12)	89.26(12)	2.046(3)	2.874(5)	
O3#2	91.21(12) 177.55(12)	93.15(12)	89.26(12)	89.26(12)	2.046(3)	
	Si	O1	O1 ^{#1}	O1#2	O5		
	O1	1.608(3)	2.634(5)	2.634(5	5) 2.588((3)	
	O1#1	109.96(12)	1.608(3)	2.634(5	5) 2.588(3)	
	O1#2	109.96(12)	109.96(12)	1.608(3	3) 2.588(3)	
	O5 108.97(12) P O1 ^{#5}		108.97(12)	108.97(12) 108.97(12)		1.571(2)	
			O2	O3 ^{#4}	O4 [#]	3	
	O1#5	1.581(3)	2.527(4)	2.494(4	4) 2.462((5)	
	O2	111.3(2)	1.479(3)	2.559(4) 2.479(4)	
	O3 ^{#4}	108.3(2)	118.8(2)	1.494(3	s) 2.495(3)	
	O4 ^{#3}	101.7(2)	107.52(14)	107.8(2)	1.594(2)	

^{#1}: $-y, x - y, z; {}^{t_2}: -x + y, -x, z; {}^{t_3}: -x + y + 2/3, -x + 1/3, z + 1/3$ ^{#4}: $-x + 2/3, -y + 1/3, -z + 1/3; {}^{t_5}: -x + 1/3, -x + y + 2/3, -z + 1/6$

angle(P-O1-Si) = $134.7(2)^{\circ}$ angle(P-O4-P) = $127.9(3)^{\circ}$ angle(Si-O5-Si) = 180°

 Δ is the difference of the corresponding atomic parameters, and σ_1 and σ_2 are the estimated standard deviations of them. Because the results of the crystal obtained from the Ru–Nb–Si–P–O system have better accuracy, we give them in Tables 2 and 3.

The structure of RuP_3SiO_{11} has a three-dimensional network of silicophosphate ion composed of Si_2O_7 and P_2O_7 subunits (Fig. 1). A Si_2O_7 fragment is illustrated at the center of Fig. 1. The bond lengths and angles are Si-

TABLE 2						
Atomic Parameters for RuP ₃ SiO ₁₁ with Standard Deviations in Parentheses						

Atom	x	у	z	$U(\text{\AA}^2)$	$U_{11}{}^a$	$U_{22}{}^a$	$U_{33}{}^a$	$U_{12}{}^a$	$U_{13}{}^a$	$U_{23}{}^a$
Ru	0.0	0.0	0.158752(14)	0.0050(2)	0.56(2)	0.56(2)	0.40(2)	0.278(8)	0.0	0.0
Р	0.3715(2)	0.0393(2)	0.11974(3)	0.0062(4)	0.63(5)	0.66(5)	0.55(5)	0.31(4)	-0.01(5)	-0.04(5)
Si	0.0	0.0	0.03997(5)	0.0059(6)	0.66(5)	0.66(5)	0.46(9)	0.33(3)	0.0	0.0
O1	0.0477(5)	0.2035(4)	0.05327(8)	0.0082(13)	1.1(2)	0.6(2)	1.0(2)	0.60(13)	-0.22(13)	-0.06(12)
O2	0.2235(4)	0.0858(4)	0.12695(7)	0.0089(14)	0.80(15)	1.0(2)	0.93(15)	0.49(13)	0.54(12)	0.38(13)
O3	0.1361(5)	0.2309(4)	0.18918(7)	0.0101(13)	1.0(2)	0.9(2)	1.1(2)	0.51(14)	-0.36(13)	-0.47(12)
O4	0.2098(5)	0.0	0.75	0.008(2)	0.9(2)	1.3(2)	0.5(2)	0.64(12)	0.14(9)	0.3(2)
O5	0.0	0.0	0.0	0.014(3)	1.7(2)	1.7(2)	0.8(4)	0.87(12)	0.0	0.0

^{*a*} U_{ii} multiplied by 100.

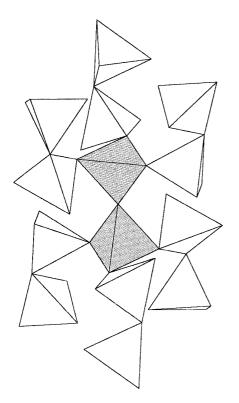
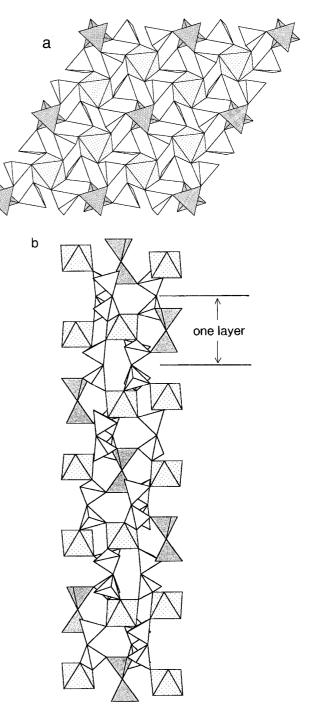



FIG. 1. A partial structure of the silicophosphate ion in RuP_3SiO_{11} . Shaded polyhedra are Si_2O_7 units and open polyhedra are P_2O_7 units.

 $O_{terminal} = 1.61$ Å, Si– $O_{bridge} = 1.57$ Å, and angle (Si–O–Si) = 180°. Six terminal oxygen atoms of Si₂O₇ are bonded to the surrounding six P₂O₇ subunits. The P–O bond lengths in the P₂O₇ groups are 1.58 Å (with O atoms connected with Si atoms), 1.48 Å (with O atoms connected with Ru atoms), and 1.59 Å (with a bridging O atom). The PO₄ tetrahedra are smaller than the SiO₄ tetrahedra, and this is always observed in silicophosphates.

The six P_2O_7 units in Fig. 1 are bonded with other Si₂O₇ to form an infinite network. Figure 2(a) illustrates the projection of four unit cells of RuP₃SiO₁₁ on the *a*-*b* plane. Shaded polyhedra indicate SiO₄. Each PO₄ unit is connected to one SiO₄ and two RuO₆ (dotted polyhedra) through three terminal oxygen atoms. Ruthenium atoms exist on threefold axes, and are bonded with the two kinds of oxygen atoms. However, the interatomic distances of Ru–O are 2.04 and 2.05 Å, and the RuO₆ octahedron is almost regular. These distances are similar to those observed in Ru^{III}P₃O₉ polymorphs (2.00 ~ 2.06 Å) (11).

Figure 2(b) shows the projection of RuP₃SiO₁₁ along the (1 1 0) direction. The crystal structure is constructed from six identical layers as indicated in Fig. 2(b). The layers are built up of RuO₆, Si₂O₇, and PO₄ units and are stacked along the *c* axis sharing the apices of the PO₄ tetrahedra. The layer is observed in many silicophosphates such as $AMo_3P_6Si_2O_{25}(A = Rb, Cs, and Tl)(3, 4), Si_5P_6O_{25}(9), and$

FIG. 2. (a) The structure of $\text{RuP}_3\text{SiO}_{11}$ projected on the *a*-*b* plane. Four unit cells are seen in this figure. Dotted polyhedra are RuO_6 and shaded polyhedra are Si_2O_7 . Open tetrahedra are PO_4 units. For the simplification, the figure shows one independent layered substructure (see (b)). (b) The unit cell of $\text{RuP}_3\text{SiO}_{11}$ projected along the (1 1 0) direction. It is constructed of six identical layers. The layers are connected with the oxygen atoms of pyrophosphate units.

 $MoP_3SiO_{11}(5)$. While the layers of RuP_3SiO_{11} and MoP_3-SiO_{11} are directly connected with each other, those of $AMo_3P_6Si_2O_{25}$ and $Si_5P_6O_{25}$ are connected through another MO_6 monolayer.

The structure of MoP₃SiO₁₁ was described in the monoclinic space group C2/c. However, the reported monoclinic unit cell can be converted into a new unit cell with a =8.419 Å, b = 8.419 Å, c = 39.962 Å, $\alpha = 90.00^{\circ}$, $\beta = 90.00^{\circ}$, and $\gamma = 120.02^{\circ}$. Here, the cell vectors of the new unit cell are defined by $a = 1/2(a_{\rm m} + b_{\rm m}), b = 1/2(-a_{\rm m} + b_{\rm m})$, and $c = 3c_{\rm m} + a_{\rm m}$. The cell parameters suggest the trigonal symmetry. The new atomic coordinates that are obtained by the same basis change followed by a translation of (-1/3, -1/6, -1/6) show essentially the trigonal symmetry. The deviations of the atomic coordinates from the average structure having the perfect threefold symmetry were less than 1.2 times of the respective standard deviations. Addition of the threefold axis to the space group C2/c gives the space group R3c. The new atomic coordinates of MoP₃- SiO_{11} are very close to those of RuP_3SiO_{11} , and the two compounds are isotypic. The cell dimensions of MoP₃SiO₁₁ are slightly larger than those of RuP₃SiO₁₁, which is consistent with the larger ionic radius of molybdenum.

REFERENCES

- 1. M. Trojan and D. Brandová, Acta Crystallogr. Sect. C 43, 2038 (1987).
- A. Leclaire, H. Chahboun, D. Groult, and B. Raveau, J. Solid State Chem. 65, 168 (1986).
- A. Leclaire, J. C. Monier, and B. Raveau, Acta Crystallogr. Sect. B 40, 180 (1984).
- A. Leclaire, J. C. Monier, and B. Raveau, *Acta Crystallogr. Sect. C* 41, 1719 (1985).
- 5. A. Leclaire and B. Raveau, J. Solid State Chem. 71, 283 (1987).
- S. L. Wang, C. C. Wang, and K. H. Lii, J. Solid State Chem. 74, 409 (1988).
- A. Leclaire, M. M. Borel, A. Grandin, and B. Raveau, J. Solid State Chem. 80, 250 (1989).
- A. Leclaire, M. M. Borel, A. Grandin, and B. Raveau, *Mater. Chem. Phys.* **12**, 537 (1985).
- 9. H. Mayer, Monatsh. Chem. 105, 46 (1974).
- 10. A. Leclaire and B. Raveau, J. Solid State Chem. 75, 397 (1988).
- H. Fukuoka, H. Imoto, and T. Saito, J. Solid State Chem. 119, 107 (1995).
- A. Leclaire, M. M. Borel, A. Grandin, and B. Raveau, Acta Crystallogr. Sect. C. 45, 699 (1989).
- G. M. Scheldrick, "SHELXS-86, Program for Crystal Structure Determination." University of Göttingen, Göttingen, Germany, 1986.
- G. M. Scheldrick, "SHELXS-76, Program for Crystal Structure Determination." University of Cambridge, Cambridge, UK, 1976.
- H. Imoto, S. Hayakawa, N. Morita, and T. Saito, *Inorg. Chem.* 29, 2007 (1990).